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SUMMARY

Our knowledge of transcriptional heterogeneities in
epithelial stem and progenitor cell compartments is
limited. Epidermal basal cells sustain cutaneous tis-
sue maintenance and drive wound healing. Previous
studies have probed basal cell heterogeneity in stem
and progenitor potential, but a comprehensive
dissection of basal cell dynamics during differentia-
tion is lacking. Using single-cell RNA sequencing
coupled with RNAScope and fluorescence lifetime
imaging, we identify three non-proliferative and one
proliferative basal cell state in homeostatic skin
that differ in metabolic preference and become
spatially partitioned during wound re-epithelializa-
tion. Pseudotemporal trajectory and RNA velocity
analyses predict a quasi-linear differentiation hierar-
chy where basal cells progress from Col17a1Hi/
Trp63Hi state to early-response state, proliferate at
the juncture of these two states, or become growth
arrested before differentiating into spinous cells.
Wound healing induces plasticity manifested by
dynamic basal-spinous interconversions at multiple
basal transcriptional states. Our study provides a
systematic view of epidermal cellular dynamics, sup-
porting a revised ‘‘hierarchical-lineage’’ model of
homeostasis.
INTRODUCTION

Epithelial tissuemaintenance is driven by resident stem cells, the

proliferation and differentiation dynamics of which need to be

tailored to the tissue’s homeostatic and regenerative needs.

However, our understanding of tissue-specific cellular dynamics

in vivo at single-cell and tissue scales is often very limited. The
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self-renewing skin epidermis represents an outstanding model

to study the precise sequence of events that underlie the

commitment and differentiation of epithelial stem cells toward

highly specialized terminal states with important biological

functions.

Within the adult mouse interfollicular epidermis, stem and pro-

genitor cells residing in the basal layer undergo self-renewing or

differentiative cell divisions to maintain a proper pool of basal

cells and to generate post-mitotic differentiating (spinous and

granular) cells in the suprabasal layers that ultimately form the

stratum corneum—an outer permeability barrier that protects

an organism from dehydration, infection, and a myriad of other

harmful insults (Gonzales and Fuchs, 2017). Cumulative evi-

dence supports multiple possible mechanisms of epidermal ho-

meostasis: (1) a single, equipotent population of progenitor cells

stochastically choosing between self-renewal and differentia-

tion; (2) a hierarchical lineage of relatively quiescent stem cells

giving rise to faster cycling, and committed progenitor cells

that then exit the cell cycle and terminally differentiate; and (3)

two spatially segregated populations of stem cells that divide

at different rates and adopt distinct lineage trajectories (Gon-

zales and Fuchs, 2017; Mascré et al., 2012; Rompolas et al.,

2016; Sada et al., 2016). The different criteria used for stem

and progenitor fate assignment, such as molecular differentia-

tion markers, basal layer residence status, and assumptions

about stem cell division or clonal-growth kinetics, may account

for the differences in data interpretation leading to these seem-

ingly diverse models (Gonzales and Fuchs, 2017). Moreover,

the observed epidermal stem cell heterogeneity in mouse back

skin may reflect different cellular states of a single differentiation

program (Rognoni andWatt, 2018). Clearly, single-cell resolution

data are needed to provide a comprehensive picture of basal cell

heterogeneity and cellular states during epidermal lineage

differentiation.

Upon cutaneous wounding, the skin must alter its cellular

dynamics to facilitate efficient healing for timely restoration of

the protective barrier. Wound healing represents a highly regu-

lated process composed of several distinct but overlapping
r(s).
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stages (inflammation, re-epithelialization, and resolution) that

involve the coordinated activities of epidermal, dermal, im-

mune, and endothelial cells (Gurtner et al., 2008). Re-epithelial-

ization is driven by spatially patterned migration and prolifera-

tion of epidermal cells at the wound periphery, as well as

migration and dedifferentiation and reprogramming of hair folli-

cle (HF) and sebaceous gland epithelial cells (Haensel and Dai,

2018; Park et al., 2017; Rognoni and Watt, 2018). What and

how epidermal cells migrate during wound re-epithelialization

has been a subject of debate, with two different models pro-

posed: (1) basal cells first migrate into the wound bed and uni-

directionally convert into suprabasal cells, and (2) wound pe-

ripheral epidermal cells crawl or ‘‘leapfrog’’ over one another

such that suprabasal cells migrate in and become basal cells

(Rittié, 2016; Rognoni and Watt, 2018). Recent live-cell imaging

and lineage tracing studies have defined distinct zones of

epidermal cellular activities in the wound area: a migratory

zone next to the wound margin where both basal and supra-

basal cells move toward the wound center; an intermediate,

mixed zone of coordinated migration and proliferation; and a

hyperproliferative zone furthest away from the wound margin

(Aragona et al., 2017; Park et al., 2017). Precisely how many

distinct transcriptional states exist for wound epidermal cells

and whether these states correlate with or differ from their ho-

meostatic counterparts, particularly within the basal layer,

remain to be elucidated.

In this work, we performed single-cell RNA sequencing

(scRNA-seq) of cells from normal or wounded (WO) mouse

skin, and identified four distinct basal cell states in normal skin

that alter gene expression during wound healing. Using multi-

plexed RNA in situ detection (RNAScope) and fluorescence life-

time imaging microscopy (FLIM), we spatially mapped the

scRNA-seq-revealed molecular and metabolic heterogeneities

onto the intact normal and WO skin tissue. Pseudotemporal tra-

jectory and RNA velocity analyses placed the different basal cell

states temporally onto a differentiation hierarchy and revealed

enhanced cell fate and state fluidity during wound healing. Over-

all, our study provides a comprehensive single-cell perspective

of epidermal cellular dynamics and transitional states during

normal homeostasis and repair.
Figure 1. scRNA-Seq Analysis of All Cells in the UW and WO Skin

(A) Schematic diagram detailing the single-cell isolation and live-cell selection st

(B) H&E analysis of WO skin showing a region equivalent to those used for scRNA

used for single-cell suspension. Enlarged image of the boxed area in top panel i

zone. Red dashed line points to the wound margin.

(C) t-Distributed Stochastic Neighbor Embedding (tSNE) plot for all five samplesw

total number (26,779) of all cells indicated in parenthesis. The two small clusters

Figure S1C).

(D) Cells are colored by replicate identity in the tSNE plot.

(E) Bar graph representingmajor cell type populations. Chi-square test was used to

each cell type between UW and WO samples. ***p < 0.0005.

(F) tSNE plot for the two aggregated UW replicate datasets. The percentage of c

indicated. Markers associated with the indicated cell types are listed in Figure S

(G) tSNE plot for the three aggregated WO replicate datasets (total 16,164 cells).

Table S1B.

(H) Feature plots showing expression of the indicated genes in the UW replicates

onto the t-SNE plot.

(I) Feature plots in the WO replicates in (G).
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RESULTS

scRNA-Seq Reveals Global Changes in Skin Cellular
Makeup during Wound Healing
To systematically examine major cell type and cell state

differences between homeostasis and repair, we performed

scRNA-seq on samples isolated from unwounded (UW) and WO

mouse back skin (Figure 1A). The wound samples were taken at

4 days after the introduction of 6-mm wounds, corresponding to

a stage of active re-epithelialization (Figures 1B and S1A). After

quality control (Figure S1B; STAR Methods), we obtained 10,615

(from twoUWbiological replicates) and16,164 (fromthreeWObio-

logical replicates) cells for downstreamanalyses. By combining all

five samples using Seurat (Butler et al., 2018), we identified three

major cell types: epithelial (high Krt14 or Krt1 expression), fibro-

blast (high Col1a2 expression), and immune (high Ptprc expres-

sion) (Figures 1C, 1D, S1C, and S1D). The average percentages

of immunecells and, to a lesser extent, fibroblastswere increased,

and the average percentage of epithelial cells decreased, in the

WO replicates compared to UW replicates (Figures 1E and S1E).

We also analyzed the UW and WO sample types separately

(STAR Methods). Known cell type markers (Han et al., 2018;

Joost et al., 2016, 2018; Jaitin et al., 2014) were used to deter-

mine cluster identity (Figures 1F, 1G, and S2A–S2C; Tables

S1A and S1B). For UW and WO samples, we observed 15 and

14 cell clusters, respectively (Figures 1F and 1G). Feature plots

of key cell type markers revealed population-level changes in

epidermal basal (Krt14+) and spinous (Krt1+) cells, HF-associ-

ated cells (Krt17+), immune cells (Ptprc+), and fibroblasts

(Col1a2+) (Figures 1H and 1I). Several new cell types, including

macrophages, dendritic cells (DCs; which also includes the

Cd207+ Langerhans cells), myofibroblasts, and endothelial cells,

were either expanded or only detectable in the WO skin (Fig-

ure S2D). The dramatically increased presence of macrophages

and myofibroblasts in WO skin was confirmed using immunoflu-

orescence with antibodies for F4/80 and smooth muscle actin

(SMA), respectively (Figure S3). Greater presence and contribu-

tions of distinct immune cell types from theWO sample was also

evident when individual cell types were identified in our UW-WO

combined dataset from above (Figures S2E and S2F; Table S2).
rategy.

-Seq. The blue dashed line at the top indicates a representative 10-mm region

s shown at the bottom to highlight the wound migrating front and proliferative

ith themajor cell type populations highlighted, and their relevant percentage per

in gray (labeled as ‘‘other’’) are endothelial cells and skeletal muscle cells (see

determine the statistical significance of differences in the relative proportion of

ells present in each cluster per total number (10,615) of cells under analysis is

2B and Table S1A.

Markers associated with the indicated cell types are listed in Figure S2C and

in (F). Normalized expression levels for each cell are color-coded and overlaid



Figure 2. scRNA-Seq Analysis Reveals Mild Changes in Epithelial Cellular Makeup during Wound Healing

(A) tSNE plot for all epithelial cells from UW skin with cell each type indicated. The percentage of cells in each cluster per total number (7,099) of cells under

analysis is indicated in parenthesis.

(B) tSNE plot for all epithelial cells (4,021) from WO skin.

(C) Bar graph representing the major epithelial cell type populations in the UW and WO samples. Chi-square test was performed (*p < 0.05; ***p < 0.0005).

(D) Feature plots highlighting the expression of key genes in UW epithelial cells.

(E) Feature plots highlighting the expression of key genes in WO epithelial cells.

(F) Heatmap for the top 10 genes enriched in each cluster from the UW skin. Top two marker genes for each cluster are colored to match cluster identity, and

additional genes used in the final annotations are colored in black. All marker genes are listed in Table S3A.

(G) Heatmap for the top 10 genes enriched in each cluster from the WO skin. All marker genes are listed in Table S3B.
Moreover, the percentage of each cell type in the combined anal-

ysis is quantitively similar to that in the separate analysis (Figures

S2D and S2F), indicating the robustness of the findings.

Epithelial cells of the interfollicular epidermis, HF, and seba-

ceous gland drive wound re-epithelialization. Subclustering

analysis of these cells revealed comparable numbers of clusters

in UW andWO samples, namely, four basal cell subclusters, two

spinous cell subclusters, and four HF subclusters with distinct

markers (Figures 2A, 2B, and 2D–2G; Tables S3A and S3B),
which are generally consistent with the reported scRNA-seq

data using Fludigm C1 platform (Joost et al., 2016). Compared

to the Joost et al. (2016) dataset, our dataset does not contain

a minor loricrin+ granular cell population, likely due to difference

in cell harvest procedure, but it features a distinct proliferative

basal cell subcluster in both UW and WO skin (Figures 2A, 2B,

2D, and 2E). Overall, the relative proportions of the various

epithelial cell types did not dramatically change between UW

and WO skin (Figure 2C).
Cell Reports 30, 3932–3947, March 17, 2020 3935



Figure 3. Gene Expression Differences between Epidermal Basal Cells of the UW and WO Skin

(A) Heatmap showing the top 10 markers for basal cells from the UW and WO samples. All the identified markers are listed in Table S4.

(B) Expression of select genes in UW and WO basal cells. p values are from two-sided Wilcoxon rank-sum tests.

(C) GO analysis of the identified markers (listed in Table S4) of UW and WO basal cells using GO (left) and Hallmark (right; defined by fewer genes) gene sets.

(D) Gene scoring analysis using the indicated molecular signatures. p values are from two-sided Wilcoxon rank-sum tests.
Collectively, thesedata provide ageneral overviewof themajor

changes in cellular heterogeneity from homeostasis to a wound

healing state, supporting current knowledge obtained using

traditionalmethods (Gurtner et al., 2008; ShawandMartin, 2009).

Wound Epidermal Basal Cells Upregulate Inflammation-
and Migration-Related Gene Expression
Next, we compared UW and WO epidermal basal cells by sub-

seting out the Krt14+ but Krt17�CD34� epithelial subsets (Fig-

ures 2D and 2E). We also excluded the proliferative Krt14+ basal

cell subcluster from this analysis to avoid cell cycle gene expres-

sion overshadowing other molecular differences (Figure S4A). A

total of 53 and 99 genes were particularly enriched in UW and

WObasal cells, respectively (Table S4). Interestingly, the expres-

sion levels of such enriched genes were not uniform across all

single cells of each condition, with some UW basal cells display-

ing a WO-like signature but not vice versa (Figure 3A).
3936 Cell Reports 30, 3932–3947, March 17, 2020
Genes upregulated in WO basal cells included inflammatory

genes Cxcl2, Ccl2, and Ccl7; epithelial-to-mesenchymal transi-

tion (EMT)-related genes Snai2 and Vim; and positive-control

Krt16 (Wawersik et al., 2001; Figure 3B). Gene Ontology (GO)

analysis of all differentially expressed genes revealed enrich-

ment of inflammation (e.g., transforming growth factor a

[TNF-a] signaling and interferon gamma response) and EMT

signatures in WO basal cells (Figure 3C). Genes associated

with wound healing, EMT, or upregulated in the leading edge

of wound neo-epidermis (i.e., a5 integrin-expressing cells) (Ara-

gona et al., 2017) showed upregulation in WO basal cells

compared to UW counterparts (Figure 3D). Moreover, UW basal

cells encompassed two distinct subsets scoring low and high for

TNF-a signaling and hypoxia, whereas WO basal cells scored

uniformly higher for the same gene sets (Figure 3D). Together,

these data demonstrate that epidermal basal cells may exist in

distinct inflammation-low and inflammation-high states during



Figure 4. scRNA-Seq and RNAScope Data Revealing Heterogeneity within UW Epidermal Basal Cells

(A) tSNE plot for NP basal cells from two UW replicates. The percentage of each subpopulation per total number (2,838) of basal cells was indicated.

(B) Heatmap of top 10markers for each subcluster in (A). Genes used to annotate cell identity are indicated by the corresponding colors. A complete list of marker

genes is provided in Table S5.

(C) Violin plots showing expression of key marker genes. p values are from two-sided Wilcoxon rank-sum tests.

(legend continued on next page)
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homeostasis and that they dramatically upregulate inflammatory

and migratory gene expression during wound healing.

Three Distinct Non-proliferative (NP) Basal Cell States
Exist in UW Skin
We next zoomed in on the NP UWbasal cells to dissect their het-

erogeneity. Three distinct subclusters were observed (Figures

4A and 4B; Table S5): (1) aCol17a1Hi subcluster with topmarkers

such as Col17a1, a gene enriched in epidermal stem cells, and

Trp63, a gene enriched in quiescent bulge HF stem cells (Bu-

HFSCs) compared with activated stem and progenitor cells

(Lien et al., 2011); (2) an early-response (ER) subcluster

enriched for immediate early genes and genes associated with

activated Bu-HFSCs relative to quiescent Bu-HFSCs or with

known function in regulating proliferation, such as Fos, Jun,

and Id1 (Andrianne et al., 2017; Briso et al., 2013; Florin et al.,

2006; Herschman, 1991; Lien et al., 2011; Rotzer et al., 2006;

Zenz and Wagner, 2006; Zhu et al., 2008); and (3) a growth-ar-

rested (GA) subcluster enriched for genes with known functions

in promoting cell cycle arrest, such as Cdkn1a, Irf6, Ovol1, and

Sfn (Hammond et al., 2012; Ingraham et al., 2006; Nair et al.,

2006; Topley et al., 1999; Figures 4C, S4B, and S4C; Table

S5). Binarizing the expression of select marker genes for Co-

l17a1Hi, ER, and GA subclusters revealed little overlap in cells

that most abundantly express Col17a1 (or Trp63) or Cdkn1a,

whereas stronger overlap was seen for Id1. For example, at least

42% of basal cells uniquely express appreciable levels (i.e.,

>0.75 quantile) of Col17a1 (Col17a1Hi subcluster) and 10% of

basal cells uniquely express appreciable levels of Cdkn1a (GA

subcluster) (Figure S4D). Furthermore, GA- and Col17a1Hi-en-

riched genes presented a trend of inverse correlation among

the three subclusters (Figure 4C). Together, our data support

the existence of three major, distinct transcriptional states in

NP UW basal cells.

The three NP basal cell states also showed distinct molecular

signatures. The GA state showed the highest expression of

TNF-a signaling, hypoxia, and EMT genes and enrichment for

a gene signature derived from a label-retaining basal cell popu-

lation (Sada et al., 2016; Figures 4D, S4E, and S4F). In contrast,

the Col17a1Hi state scored the lowest for inflammation and EMT

genes but highest for a ‘‘quiescence and stemness’’ signature

derived from tissue quiescent stem cells (Cheung and Rando,

2013; Figure 4D). There was also a stepwise increase in
(D) Gene scoring analysis using the indicated molecular signatures. HFSCs and s

from two-sided Wilcoxon rank-sum tests.

(E) RNAScope data showing spatial distribution of Cdkn1a and Krt14 transcripts a

magnification images. Red and white arrows indicate Cdkn1a+ and Cdkn1a

low-magnification image; 10 mm in high-magnification images.

(F) Spatial distribution of Cdkn1a, Trp63, and Id1 transcripts and K14 protein in UW

cells, respectively. Scale bars represent the same as in (E).

(G) Quantification of fluorescence intensity (represented by a color-coded dot) fo

representative section. The curve represents a Gaussian process regression (GP

(H) Quantification of fluorescence intensity for Cdkn1a, Trp63, and Id1 transcript

(I) OncoPrint representation of Cdkn1a, Trp63, and Id1 expression in individual c

indicates high expression of the corresponding marker gene. The cells are so

expression pattern.

(J) Bar graph showing percentage of cells that exclusively express Cdkn1a, Tr

replicates). Error bars represent mean ± SEM.
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epidermal differentiation gene expression from Col17a1Hi to ER

and toGA states (Figure 4D). These data suggest that these three

basal cell states are defined by their differences in inflammation,

migration, quiescence and stemness, cell cycle exit, and differ-

entiation status.

We then used RNAScope to validate the existence of three NP

basal cell states in the intact skin tissue. Co-analysis of GA

marker Cdkn1a with Krt14 transcripts and K14 protein revealed

several interesting points: (1) the levels of Krt14 transcript and,

to a lesser extent, K14 protein fluctuated along the basal layer

of the epidermis, and the location of such variation did not

always coincide; and (2) Cdkn1a transcripts were present in

some but not all K14-positive basal cells, and the highest expres-

sion was detected in a subset of suprabasal cells (Figures 4E and

4G). Co-analysis of Col17a1Hi markers Col17a1 and Trp63

detected basal cells that express both Col17a1 and Trp63,

only Col17a1, or neither (Figure S5A). Quantitative analysis

revealed that most basal cells expressing high levels of Trp63

also expressed high levels of Col17a1, but some cells only

expressed high levels ofCol17a1 (Figure S5B). We also validated

and detected the heterogeneous expression of Col17a1 and p63

proteins in the epidermal basal layer (Figures S5C and S5D). Co-

analysis of Cdkn1a with Trp63 and ER state marker Id1 revealed

the presence of cells in the basal layer that uniquely expressed

each of themarkers (Figures 4F and 4H–4J). Few cells expressed

two markers simultaneously, Trp63 and Cdkn1a expression was

mutually exclusive, and none expressed all three markers (Fig-

ures 4I and 4J). Thus, epidermal basal cells exist in multiple NP

transcriptional states in vivo.

Three Distinct NP Basal Cell States Exist in WO Skin and
Are Spatially Partitioned
We next turned to the WO samples to assess basal cell hetero-

geneity during wound healing. We observed three distinct NP

subclusters, which we also termed Col17a1Hi, ER, and GA

subclusters (Figures 5A–5C). The corresponding UW and WO

subclusters shared the highest levels of gene expression with

each other compared with other subclusters (Figures S5E and

S5F; Tables S5 and S6). Moreover, random forest classification

provided further support for assigning the WO subclusters with

similar identities as those in the UW basal cells (Figure S5G).

The WO GA cells were enriched for genes associated with a5-

integrin-positive leading edge, inflammation, and hypoxia and
pinous cells from the UW sample were used as positive controls. p values are

nd K14 protein in UW skin. Shown are both low (left)- and high (middle, right)-
� basal cells, respectively. DAPI stains the nuclei. Scale bars: 50 mm in

skin. Red, white, and yellow arrows indicate Id1+, Trp63+, and Cdkn1a+ basal

r Cdkn1a and Krt14 transcripts and K14 protein in each individual cell from a

R), and a 95% confidence interval is shown as shaded area.

s and K14 protein in each individual cell from a representative section.

ells where a rectangle represents an individual cell. A color-coded rectangle

rted based on the onor off state of the markers to show mutually exclusive

p63, or Id1 per total number of cells that express the particular gene (n = 3



Figure 5. Basal Cell Heterogeneity in WO Skin

(A) tSNE plot for NP basal cells from two WO replicates. WO-2 was not included in this analysis given its low basal cell number. The percentage of each sub-

population per total number (1,555) of basal cells was indicated.

(B) Heatmap of top 10 markers for each subcluster. A complete list of marker genes is provided in Table S6.

(C) Violin plots showing expression of key marker genes. p values are from two-sided Wilcoxon rank-sum tests.

(D) Gene scoring analysis using the indicated molecular signatures. p values are from two-sided Wilcoxon rank-sum tests.

(E) Quantitative analysis of immunofluorescence data for Snai2 protein. Percent Snai2+ cells in the basal layer of different regions in WO skin is shown here, and

representative images are shown in Figure S6F.

(F) Quantitative analysis of immunofluorescence data for Fos protein. Percent Fos+ cells in the basal layer of different regions in WO skin is shown here and

representative images are shown in Figure S6G.

(legend continued on next page)
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have the lowest quiescence and stemness score but the highest

epidermal differentiation score (Figures 5D and S6A; Table S6).

Moreover, individual genes that are known to be enriched

(Snai2, Krt16, and Hbegf) or downregulated (Cd9) in the wound

migratory front (Haensel and Dai, 2018; Jiang et al., 2013; Shira-

kata et al., 2005) were observed in the WO GA subcluster (Fig-

ures S6B and S6C), suggesting that cells at the migrating front

are predominantly in a GA state (see below). Interestingly, WO

Col17a1Hi cells showed a significant enrichment for oxidative

phosphorylation genes (Figure S6A), a point we will return to

later.

We next examined the spatial distribution of basal cell states in

WO skin. Co-analysis of Col17a1 and Trp63 transcripts revealed

dramatic upregulation of single- and double-positive cells from

the wound periphery to the hyperproliferative zone but a

decrease of such cells in the migrating front (Figures 5G and

5H). Similarly, Col17a1 and p63 proteins were found to be down-

regulated in the migrating front relative to the hyperproliferative

zone or distal to the wound (Figure S6D and S6E). Although

Col17a1 expression was largely restricted to the basal layer,

Trp63 expression was also detected in suprabasal cells. In the

wound hyperproliferative zone, GAmarkerCdkn1awas predom-

inantly expressed in suprabasal cells; however, in the migrating

front, its strong expression was detected in both basal and

suprabasal cells (Figures 5I–5K). Quantification of Cdkn1a sig-

nals along the entire basal layer of the WO area revealed a clear

increase toward the migrating front (Figure 5K). WO GA marker

Snai2 (Slug) protein was enriched in basal cells at the migrating

front relative to those in the hyperproliferative zone or distal to

the wound (Figures 5E and S6F). ER marker Fos protein was en-

riched in the proliferative zone, but its expression dissipated in

the migratory zone or UW area (Figures 5F and S6G). The overall

trend is enrichment of Col17a1Hi and ER markers in the prolifer-

ative zone and wound periphery and enrichment of GA marker in

the migrating front.

Collectively, our data show that basal cells in WO skin also

exist in three major distinct states, with the Col17a1Hi/ER states

dominating the proliferative zone and the GA state similar to the

previously described leading-edge population (Aragona et al.,

2017) dominating the migrating front.

Metabolic Heterogeneity in Basal Cells of the Normal
and WO Skin
To compare themetabolic status of the different basal cell states

identified above, we scored all UW and WO basal cells for their

expression of oxidative phosphorylation (OxPhos) and glycolysis

genes. In UW skin, the proliferative basal cell states showed the

highest, whereas the GA state showed the lowest, oxidative

phosphorylation score (Figure 6A). In WO skin, oxidative phos-

phorylation of the Col17a1Hi state was elevated to a level similar
(G) RNAScope data showing spatial distribution of Col17a1 and Trp63 transcript

(H) Enlarged images of the boxed areas in (G). Zones 1–3 correspond to region

migrating front (zone 3). Scale bar: 50 mm.

(I) RNAScope data showing spatial distribution of Cdkn1a and Krt14 transcripts

(J) Enlarged images of the boxed areas in (I). See legends for (H) for zone definit

(K) Quantification of fluorescence intensity for Cdkn1a and Krt14 transcripts and

curve represents a GPR, and a 95% confidence interval is shown as shaded are
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to that of proliferative WO basal cells (Figure 6B). The WO GA

state still scored the lowest for oxidative phosphorylation, which

is in keeping with its highest mRNA expression of the hypoxia

response factor Hif1a (Figures 6B and S6H). An apparently

opposite trend was seen for glycolysis genes, as GA cells dis-

played higher glycolysis score than the other NP subsets in

both UW and WO skin (Figure S6J and S6I).

Two-photon excitation (TPE) and NADH FLIM have been

used for in vivo metabolic measurements during skin wound

healing (Deka et al., 2016; Jones et al., 2018). Applying this

method to WO skin exercised from K14-Cre;ROSAmTmG mice,

where epidermal cells were visualized by GFP expression, we

measured NADH autofluorescence in individual cells within

the GFP+ basal layer in three different areas: outside of the

wound, portions of the proliferative zone, and regions of the

migratory front deep within the wound (Figures 6C and 6D).

TPE NADH intensities and lifetimes were captured and dis-

played in phasor plots (Figures 6E and 6F). Free-to-bound

NADH ratios, indicative of the relative level of oxidative phos-

phorylation (Stringari et al., 2012, 2015), were calculated from

each basal cell. A gourd-shaped distribution of the ratios was

observed for cells in the region far from and outside of the

wound (Figure 6G), suggesting that basal cells in UW skin

can be classified into OxPhosHigh (less abundant) and OxPho-

sLow states. The ratios were elevated in basal cells immediately

adjacent to and within the wound, with the highest values

detected in a significant fraction of basal cells in the neo-

epidermis (Figures 6G and 6H). Together, these data provide

in vivo validation for scRNA-seq-revealed metabolic heteroge-

neity within the basal compartment and show basal cells in

the wound neo-epidermis to be enriched for an OxPhosLow

and glycolysisHigh state compared with their UW counterparts.

Pseudotemporal Trajectory and RNA Velocity Analyses
Reveal Basal Cell State Transition Dynamics and
Wound-Induced Cellular Plasticity
To pseudotemporally order the distinct basal cell states in the

context of epidermal differentiation, we first applied Monocle 2

(Qiu et al., 2017b; Trapnell et al., 2014) to all interfollicular

epidermal cells, which include proliferating and NP basal cells

as well as spinous cells. In both UW and WO skin, we observed

three paths that extend from the Col17a1Hi state: proliferating

basal cells, GA state (transitioning through ER state), and

spinous cells. Col17a1Hi cells contributed in part to each of the

observed paths (Figures S7A and S7B).

Because Monocle 2 is unable to determine the origin of

trajectory without prior knowledge, we next used our previously

developed method scEpath (Jin et al., 2018) by performing uni-

form manifold approximation and projection (UMAP) of cells

(McInnes et al., 2018), based on batch effect-corrected data
s and K14 protein in WO skin. DAPI stains the nuclei. Scale bar: 50 mm.

s that are distal from the wound (zone 1), hyperproliferative (zone 2), and in

and K14 protein in WO skin. DAPI stains the nuclei. Scale bar: 50 mm.

ion. Scale bar: 50 mm.

K14 protein in each individual cell from a representative WO skin section. The

a.



Figure 6. FLIM Data Validating scRNA-Seq-Predicted Metabolic Heterogeneity in WO Skin

(A) Gene scoring analysis of all four UW basal subclusters using an oxidative phosphorylation signature. p values are from two-sided Wilcoxon rank-sum tests.

(B) Gene scoring analysis of all four WO basal subclusters. p values are from two-sided Wilcoxon rank-sum tests.

(C) Sketch diagram of wound epithelium showing the areas probed with FLIM.

(D) A representative image of wound epidermal cells indicated by GFP expression.

(E) Representative images of NADH signal and NADH lifetime signals.

(F) A representative phasor plot with cell phasor fingerprint, which is a representation of the fluorescence lifetime decay of all cells in the region of interest (ROI)

after fast Fourier transformation.

(G) Violin plot incorporating all cells and their corresponding free/bound NADH ratios from four biological replicates (156 cells from the outside region, 127 cells

from the adjacent region, and 231 cells from the neo-epidermis).

(H) Quantification of average free/bound NADH ratios frommultiple cells from the four biological replicates of various regions of the wound. For statistical analysis

we used an unpaired two-tailed Student’s t test. Error bars represent mean ± SEM.
(Figures 7A–7D; STARMethods). This method, when applied to a

536-interfollicular epidermal cell dataset (Joost et al., 2016), re-

vealed what appears to be a single-path trajectory just as re-

ported (Figure S7C). However, in our UW dataset, we observed

three distinct and largely separated clusters composed of basal,

proliferative basal, and spinous cells (Figures 7A and 7B). In the

WO dataset, we identified the same three distinct epidermal

clusters, but noted bridges between the basal and spinous clus-

ters with overall less dramatic basal-spinous separation (Figures

7C and 7D).

Next, we used scEpath to infer and quantify cell lineages with

single-cell energies (scEnergy). We found that lower energies,

although typically associated with committed and differentiated

cell states (Jin et al., 2018; Teschendorff and Enver, 2017), were

also associated with a quiescent cell state because the quies-

cent Bu-HFSC (Cd34+) population showed the lowest scEnergy

of all the skin epithelial cell types (Figure S7D). Independent of

the numbers of UW epidermal cells from each cell state that

were used to infer lineage progression, scEpath predicted a

near-linear path that originates from the Col17a1Hi basal cell

state, which displayed the lowest energy of all interfollicular
epidermal cells (Figures 7E and S7E). The Col17a1Hi state transi-

tions to the ER state, to the GA state, and then to the spinous cell

populations (SP2 to SP1), whereas the proliferative basal cells

follow a side path that originates from the ER state (Figure 7E).

This prediction was further confirmed using Monocle 3 (Cao

et al., 2019; Figure S7F).

To further analyze the epidermal differentiation dynamics in

UW skin, we performed RNA velocity analysis, in which the

direction of state transitions and the extent of change in

RNA dynamics are indicated by the vectors (arrows) and their

lengths, respectively (La Manno et al., 2018; Svensson and

Pachter, 2018). The Col17a1Hi and SP1 states showed small

RNA velocities (short or no arrows), known to associate with

both quiescent and terminally differentiated cells (Svensson

and Pachter, 2018; Zywitza et al., 2018), whereas the ER,

GA, and SP2 states exhibited large RNA velocities (Figure 7F).

Transition from the Col17a1Hi state to the ER state was asso-

ciated with increasing arrow lengths, which may reflect a

rapid activation in RNA dynamics (e.g., increased RNA

splicing efficiency; see below). Remarkably, the proliferative

basal cells followed a cyclical trajectory, which originates
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Figure 7. Pseudotemporal Dynamics Analysis of Interfollicular Epidermal Cells in UW and WO Skin
(A) UMAP dimensional reduction of all UW epidermal cells. Cells are colored by the annotated identity.

(B) Feature plots of (A) for the indicated genes. Cells are colored by the normalized expression, with dark red indicating the highest expression.

(C) UMAP of all WO epidermal cells.

(D) Feature plots of (C) for the indicated genes.

(E) scEpath-predicted lineage differentiation diagram.

(F) Projection of non-linear RNA velocity fields onto the UMAP space in (A).

(G) Projection of non-linear RNA velocity fields onto the UMAP space in (C).

(H) Pseudotemporal dynamics of the 3,699 UW pseudotime-dependent genes along the Col17a1Hi-to-GA path in UW and WO samples. Each row (i.e., gene) is

normalized to its peak value along the pseudotime. Distinct stages during pseudotime are represented by colored bars on the side. Cell identity is indicated on the

top of each heatmap generated by the smoothed, normalized gene expression.

(I) Average expression patterns (left) and enriched biological processes (right) of the four gene clusters along pseudotime in (H). Solid and dashed lines indicate the

average expression of a particular gene cluster in UW and WO samples, respectively. The number of genes in each gene cluster is indicated in parenthesis, and

the enriched GO terms in each gene cluster are listed.
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from the border between Col17a1Hi and ER states, and then

returns to the Col17a1Hi state. This analysis suggests that

epidermal basal cells normally transition through three distinct

states before embarking on spinous differentiation, and this

differentiation trajectory is fueled by the active proliferation

of basal cells at the junction between Col17a1Hi and ER

states.

The cyclical dynamics of the proliferative UW basal cells was

faithfully recapitulated in the WO sample (Figure 7G). An appre-

ciable fraction of the WO Col17a1Hi basal cells and SP1 cells ex-

hibited apparently more rapid RNA dynamics than their UW

counterparts. RNA velocity also provided evidence for enhanced

cell-fate fluidity in the WO sample, with bidirectional transitions

at multiple cellular states between the basal and spinous cells

that were not seen in theUWsample. Overall, these data suggest

that WO skin epidermal cells not only are generally more active

but also exhibit increased plasticity and relaxed cell differentia-

tion constraints compared with their UW counterparts.

HFSCs downregulate the expression of outer bulge markers,

such as Cd34, as they contribute to forming a new epidermis

during wound healing (Joost et al., 2018). Compared with a sin-

gle HFSC cluster marked by Cd34, Lhx2, and Postn expression

(Joost et al., 2016; Rhee et al., 2006) in the UW sample, two

distinct HFSC clusters—both expressing Lhx2 but with different

levels of Cd34 and Postn—were called in the WO sample (Fig-

ures 2A, 2B, 2D, and 2E). Inclusion of these two HFSC clusters

in RNA velocity analysis of WO epidermal basal cells revealed

velocity arrows pointing from Cd34Low HFSCs to ER/GA

epidermal basal cells (Figure S7G), raising the possibility that

the Cd34Low subpopulation might represent those HFSCs that

are in the process of becoming wound epidermal cells.

We next sought to identify key molecular changes that may be

important for basal cell state transitions. scEpath identified 3,699

and 3,129 pseudotime-dependent genes (including Trp63, Fos,

and Cdkn1a) from the UW and WO dataset, respectively, that

changed significantly as the basal cells transitioned through

the different states (Figures 7H and 7I). Interestingly, genes

related to specific biochemical and cellular processes defined

the Col17a1Hi to ER transition (group I and II; e.g., protein trans-

lation, rRNA processing, and cell cycle), the Col17a1Hi/ER to GA

transition (group III; e.g., RNA splicing, mRNA processing, and

cell cycle), and the GA state (group IV; e.g., mRNA processing,

cell adhesion, and translation). Although gene expression

changes were sequential and gradual during basal state

transitions in the UW sample, they appeared significantly

earlier, were more abrupt, and were sometimes sporadic in the

WO sample (Figures 7H, 7I, S7H, S7I, and S7J). This said, tran-

scription factors (TFs), which represent less than 1% of the total

3,699 pseudotime-dependent genes, showed little difference

(Figure S7K). Thus, post-transcriptional and cell cycle events

underlie the wound-induced remodeling of basal cell state

transitions.

The overall emerging picture is that Col17a1Hi basal cells in

homeostatic skin first become activated (an early response-like

state), at which point they can either enter active cell cycle and

expand as progenitor cells or undergo growth arrest and subse-

quently differentiate into spinous cells. Although this multi-step

basal-spinous differentiation trajectory is largely maintained
during wound healing, cell fate plasticity and differentiation

fluidity are enhanced such that bidirectional conversions

between basal and spinous cells are enabled.

DISCUSSION

To date, several studies have used scRNA-seq to make general

molecular and cellular categorization of the various epithelial

components of the mouse (Joost et al., 2016, 2018) and human

(Cheng et al., 2018) skin to provide key insights into normal

regeneration and wound healing (Joost et al., 2018; Yang et al.,

2017) and to unearth p63-regulated molecular and cellular

events in the developing mouse epidermis (Fan et al., 2018).

Our work adds to this growing list with a comprehensive study

of the transcriptional andmetabolic heterogeneities of interfollic-

ular epidermal basal cells in both normal and WO skin.

Our discovery of a Col17a1Hi basal cell state is thought-pro-

voking. This transcriptional state is associated with high quies-

cence and stemness and high oxidative phosphorylation but

low EMT, low differentiation, low hypoxia and inflammation,

low scEnergy, and low RNA dynamics. These molecular charac-

teristics are suggestive of a relatively quiescent, primitive stem

and progenitor cell state, a notion supported by its high expres-

sion ofCol17a1, which encodes amarker of long-term epidermal

stem cells that can outcompete other cells and a negative regu-

lator of epidermal proliferation (Liu et al., 2019; Watanabe et al.,

2017). The Col17a1Hi state also shows heightened expression of

Trp63, a master regulator of various aspects of epidermal devel-

opment, including the initial specification from simple epithelia,

promotion of stratification, proliferation, as well as terminal dif-

ferentiation (Li et al., 2019; Mills et al., 1999; Pattison et al.,

2018; Koster et al., 2007; Truong et al., 2006; Yang et al.,

1999). The dynamic change in Col17a1 and Trp63 expression

during wound re-epithelization implicates the mobilization of

Col17a1Hi-state basal cells when there is an increased demand

for cellular outputs (see below).

ER genes, such as Fos and Jun, are known as stress response

genes that can be upregulated by flow cytometry (van den Brink

et al., 2017). A transient upregulation of such immediate early

genes during embryonic and adult wound healing has been previ-

ously suggested to represent a ‘‘kick-start’’ mechanism to initiate

the repair process (Grose et al., 2002). We were able to detect

epidermal basal cells in situ that express ER-associated Fos

proteinor Id1mRNA, indicating thatanERbasalcell transcriptional

state likely exists even in the intact, UW tissue. In all gene expres-

sion and lineage prediction analyses, these cells occupy an inter-

mediate position between Col17a1Hi and GA states, raising the

possibility that ER is an obligatory transition state when dormant

cells become activated to proliferate or migrate.

Basal cells that have committed to differentiation (expressing

early differentiation marker Involucrin [Inv]) have been identified

by lineage tracing (Mascré et al., 2012). Although Inv expression

was not detectable in our scRNA-seq-identified GA basal cells, it

is likely that the GA state in the normal epidermis is post-mitotic,

most ready to commit to differentiation, and most prone to

migrate upward compared with the other basal cell states. The

high expression of EMT, glycolysis, hypoxia, and inflammation

genes associated with the GA state implicates it as being the
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most ready to respond to extracellular signals from the ever-

changing tissue microenvironment. Indeed, our data show that

during wound healing GA-state basal cells preferentially localize

to the migrating front that is closest to the hypoxic wound bed

and the infiltrating immune cells. As such, our results are in keep-

ing with the intravital imaging-revealed finding that migration and

proliferation are spatially separated in the healing wound, with

migrating cells at the tips of the growing neo-epidermis being

generally devoid of proliferative activity (Park et al., 2017).

More importantly, our data suggest that the wound repair

process capitalizes on the existing transcriptional heterogeneity

of normal epidermal basal cells but redirects it toward a

spatially coordinated program of proliferation, migration, and

metabolism.

We used four computational tools to investigate basal cell

dynamics, showing a sequential progression of basal cells

through the Col17a1Hi, ER, and then GA states in homeostatic

skin. Interestingly, scEpath and Monocle 3 predict GA as a tran-

sitional state between basal and spinous fates, a finding consis-

tent with ample experimental data supporting the notion that

basal cells undergo cell cycle exit when terminally differentiating

(Fuchs, 2008). This said, we note that in RNA velocity analysis

there is an apparent scarcity of velocity arrows pointing directly

from GA to SP2 cells (Figure 7F). It is possible that in adult ho-

meostatic skin, active basal-to-spinous transition is a rare event

that is not readily captured by RNA velocity analysis performed

on data from a single time point. Instead, most GA basal cells

in adult skin may be in a stable GA state but with rapid intrinsic

RNA dynamics and readiness to differentiate. Alternatively,

direct GA-SP2 transition may not associate with prominent

RNA splicing events. In addition, the RNA dynamics of SP2

pointing to the GA cells in UW skin (Figure 7F) raises the possibil-

ity of uncommitted nature (Guo et al., 2018) of spinous cells

before fully committing to terminal differentiation.

Significantly enhanced cell fate fluidity occurs in the WO skin,

which is evident by the overall less distinct gene expression differ-

encesbetweenbasal andsuprabasal fates aswell asmultipleRNA

velocity vector paths that bridge the different states of the basal

and spinous cell clusters. Cellular plasticity during wound healing

is well-documented, as cells of the HF and sebaceous gland line-

ages can be reprogramed to gain an interfollicular epidermal fate

(Park et al., 2017; Rognoni and Watt, 2018). Our findings highlight

yet another layer of cell fate plasticity, namely bidirectional fluidity

between basal and spinous fates at multiple transcriptional states

within the interfollicular epidermal compartment.Although thepre-

dictedconversionof spinous cells back into a basal cell fate during

wound repair isconsistentwithearlier studies (Fuetal., 2001;Man-

nik et al., 2010), recent lineage tracing (using Inv-CreER and tail

skin wounds) and live-cell imaging (using ear skin wounds) exper-

iments suggest that the conversion of suprabasal cells into basal

cells does not occur in wound healing (Aragona et al., 2017; Park

et al., 2017). It is possible that the spinous-basal cell fate fluidity

that we observe here occurs only at the transcriptional level, but

the actual conversion of spinous cells into bona fide basal cells

does not occur or occurs as a rare event that requires a very large

sample size or more extended wound healing time course (e.g.,

larger wounds) to experimentally detect. It is also possible that

spinous cells with the ability to revert back to a basal fate are not
3944 Cell Reports 30, 3932–3947, March 17, 2020
efficiently targeted by Inv-CreER. Finally, differential cellular

dynamics during the healing of wounds that incur in different

body locations (e.g., tail and ear versus back skin) may contribute

to the apparent discrepancy.

Also of interest is our identification of a distinct pool of prolif-

erating basal cells as a separate path that forms a loop with,

and thus fueling, the rest of the basal cells. The unique location

of these cells in the lineage trajectories, namely at the border

between Col17a1Hi and ER basal cell states, suggests that (1)

passage through this border might be critical for the active pro-

liferation of the otherwise dormant adult epidermal basal cells;

and (2) Col17a1Hi and ER cells are responsible for generating

more basal cells, whereas GA cells as a bulk population have

likely reached a point of no return such that they can no longer

re-enter the cell cycle to serve as a major source of basal cell

self-renewal.

It is important to note that alternativemodels of epidermal line-

age differentiation cannot be fully excluded. For example, the

proximity between Col17a1Hi and SP1 states as well as between

GA and SP2 states may lead to speculation that Col17a1Hi and

GA basal cells independently give rise to SP1 and SP2 cells,

respectively, in homeostatic and WO skin. Direct conversion of

Col17a1Hi basal cells into spinous cells (i.e., without having to

pass through ER andGA states) is indeed suggested byMonocle

2 analysis (Figures S7A and S7B). Wound-mobilized Col17a1Hi

cells in the wound hyperproliferative zone may adopt multiple

possible fates: (1) differentiating directly (skipping ER/GA states)

and indirectly into suprabasal cells (SP1 and SP2, respectively)

at the wound periphery; (2) converting, at higher rates than dur-

ing homeostasis, into GA population, which subsequently

migrate into the wound; or (3) migrating into the wound and

then converting into GA cells. The scarcity of Col17a1Hi cells in

the migrating front is more consistent with the second rather

than last possibility. Alternatively or additionally, pre-existing

GA basal cells may be preferentially recruited at the WO site to

form the migrating front, where they directly differentiate into

suprabasal cells within the wound bed. Clearly, future experi-

mentation is needed to test the lineage differentiation predictions

and the multiple possibilities indicated in this study.

Overall, the sequential progression of basal cells through three

NPstates, twoofwhicharecapableof activeproliferation, suggests

a revised ‘‘hierarchical-lineage’’ model of epidermal homeostasis

that encompasses more than one possible stem and progenitor

cell states. Our study lays a foundation for future investigation of

the significance of a multi-step, and even multi-route, basal-

spinous differentiation trajectory in the performance objectives of

adult epidermis, namely maintaining a functional, homeostatic

epithelium that can robustly regenerate itself upon injury—a goal

that is difficult to attain under pathological conditions.
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This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

K14-Cre transgenic mice (C57BL/6J background) have been previously described (Andl et al., 2004). ROSAmTmG (C57BL/6J back-

ground) andwild-type C57BL/6Jmice are from the Jackson Laboratory (Stock #s 007576 and 000664, respectively). Seven-week old

female mice were used for the studies. All maintenance, care, and experiments have been approved and abide by regulatory

guidelines of the International Animal Care and Use Committee (IACUC) of the University of California, Irvine.

METHOD DETAILS

Wounding
For single cell experiments, 7-week-old (p49, telogen) female C57BL/6J mice were anesthetized using isoflurane (Primal Healthcare;

NDC-66794-017-25), backs shaved, and then a 6-mm punch (Integra; 33-36) was used to generate a full-thickness wound on each

side of the mouse. Wounds were collected 4 days later for analysis.

For FLIM-relatedwounding experiments, 7 week-old femaleK14-Cre; ROSAmTmGmice (C57BL/6J background) were anesthetized

using isoflurane, backs shaved, and Nair was applied to the backs of the shaved mice for complete hair removal. A 6-mm punch was

used to generate a full-thickness wound on each side of the mouse. Four days after wounding, the wound and surrounding

un-wounded skin regions were excised (approximately 1.5 cm in diameter with surgical scissors) for analysis.

Single cell isolation for scRNA-Seq
For UWback skin, 7-week-old (p49, telogen) female C57BL/6Jmice were shaved, back skin removed, fat scrapped off, and then skin

wasminced into pieces less than 1mm in diameter. ForWOback skin, skin was removed, large pieces of fat attached to underside of

the wound were carefully removed, a 10-mm punch (Acuderm; 0413) was then used to capture the wound and a portion of un-

wounded skin adjacent to the wound. The wounds were then minced into pieces less than 1 mm in diameter. The minced samples

were placed in 15-mL conical tubes and digested with 10 mL of collagenase mix [0.25% collagenase (Sigma; C9891), 0.01M HEPES

(Fisher; BP310), 0.001M sodium pyruvate (Fisher; BP356), and 0.1 mg/mL DNase (Sigma; DN25)]. Samples were incubated at 37�C
for 2 hours with rotation, and then filtered through 70-mm and 40-mm filters, spun down, and resuspended in 2% FBS. Cells were
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stained with SytoxBlue (Thermo Fisher; S34857) as per manufacturer’s instructions and live cells (SytoxBlue-negative) were sorted

using BD FACSAria Fusion Sorter.

Single cell library generation
FACS-sorted cells were washed in PBS containing 0.04% BSA and resuspended at a concentration of approximately 1,000 cell/mL.

Library generation was performed following the Chromium Single Cell 3ʹ Reagents Kits v2 (following the CG00052 Rev B. user guide)

where we target 10,000 cells per sample for capture. Additional reagents included: nuclease-free water (Thermo Fisher Scientific;

AM9937), low TE buffer (Thermo Fisher Scientific; 12090-015), ethanol (Millipore Sigma; E7023-500ML), SPRIselect Reagent Kit

(Beckman Coulter; B23318), 10% Tween 20 (Bio-Rad; 1662404), glycerin (Ricca Chemical Company; 3290-32), QIAGEN Buffer

EB (QIAGEN; 19086). Each library was sequenced on the Illumina HiSeq 4000 platform to achieve an average of approximately

50,000 reads per cell.

Processing and quality control of scRNA-seq data
FASTQ files were aligned utilizing 10x Genomics Cell Ranger 2.1.0. Each library was aligned to an indexed mm10 genome using Cell

Ranger Count. Cell Ranger Aggr function was used to normalize the number of mapped reads per cells across the libraries. Quality

control parameters were used to filter cells with 200-5000 genes with a mitochondrial percentage under 10% for subsequent

analysis.

Doublet analysis of the scRNA-seq data was performed using the DoubletDetection Python (Gayoso and Shor, 2018) package. For

each individual sample, we ran DoubletDetection with default parameters using the raw count data from CellRanger output. We then

visualized the predicted singlets and doublets on the tSNE space. One small group of cells was predicted as potential doublets

(Figure S1B); however, since they exhibited the medium number of genes and UMI per cell, and were identified by markers of fibro-

blasts (Figures 1C, S1C, and S2E), we did not attempt to remove them from subsequent analysis that primarily focused on skin

epithelial cells.

Clustering analysis of scRNA-seq data
Clustering of cells was performed using the Seurat R package (Satija et al., 2015). Briefly, single cell data matrices were column-

normalized and log-transformed. Replicates for UW andWO samples were merged and then corrected using the MultiCCA function.

To identify cell clusters, principle component analysis (PCA) was first performed and the top 10 PCs with a resolution = 0.6 were used

to obtaining 15 and 14 clusters for the UW andWO samples, respectively. For the ‘‘combined’’ analysis of all five samples, the top 15

PCswith a resolution = 0.8 were used to obtain 25 clusters. These clusters were alsomerged based on themarker genes of major cell

types. For subclustering of epithelial cells, we first identified epithelial clusters from UW or WO replicate using the top 10 PCs with

resolution = 0.6 and then subset out the appropriate epithelial clusters. Replicates of these epithelial clusters were thenmerged using

MultiCCA function again using 10 PCs with resolution = 0.6.

For subclustering of epidermal basal cells, we performed batch correction using the Bayesian-basedmethodComBat from the sva

R package (Johnson et al., 2007). The corrected data were used for further clustering analysis. Briefly, for the UW sample, the top 23

PCs were used for clustering and 3 subclusters were obtained with a resolution = 0.8. For the WO sample, the top 26 PCs were used

and 3 subclusters were obtained with a resolution = 0.3. Marker genes were determined with p value < 0.01 and log(fold-change) >

0.25 as cutoff by performing differential gene expression analysis between the clusters usingWilcoxon rank sum test. To present high

dimensional data in two-dimensional space, we performed t-SNE analysis using the results of PCA with significant PCs as input.

Random forest classifier
Using the Seurat R Package 2.2.0, we employed the ClassifyCells function with default parameters, which relies on the Ranger pack-

age to build a random forest suited for high dimensional data. Training class was based on identities of the basal cells from the UW

sample, which was subsequently applied to the basal cells from the WO sample.

Pseudotime and trajectory analysis
We performed pseudotemporal ordering of all interfollicular epidermal cells, including proliferative and non-proliferative basal cells

and spinous cells, using Monocle 2 (Qiu et al., 2017b) and scEpath (Jin et al., 2018). For Monocle 2, batch effect information was

passed into the residualModelFormulaStr option in the ‘‘reduceDimension’’ function. The scEpath method can quantify the energy

landscape using scEnergy, which quantitatively measures the developmental potency of single cells (Jin et al., 2018) and was used in

our analysis to predict the initial state in pseudotime. Pseudotemporal orderingwas performed onCombat-batch corrected data. The

corrected data was scaled using the ScaleData function with default parameters, and then used as an input for dimension reduction

using PCA and UMAP, which were performed using Seurat package. The number of significant PCs was determined by the PCEl-

bowPlot function. The top six PCs were used in UMAP with the parameter min_dist being 0.35. Based on this reduced UMAP space,

scEpath infers lineage relationships between cell states via predicted transition probabilities and reconstructs pseudotime by sepa-

rately ordering individual cells along each lineage branch via a principal curve-based approach. The calculated pseudotime is

rescaled such that it is bounded in [0, 1]. scEpath also identifies pseudotime-dependent genes that are significantly changed over

the pseudotime by creating a smoothed version of gene expression using a cubic regression spline (Jin et al., 2018). To determine
e3 Cell Reports 30, 3932–3947.e1–e6, March 17, 2020



the pseudotime dependent genes, we compared the standard deviation of the observed smoothed expressions with a set of similarly

permuted expressions by randomly permuting the cell order (1000 permutations). We considered all genes with a standard deviation

greater than 0.05 and a Bonferroni-corrected p value below a significance level a = 0.01 to be pseudotime dependent. To analyze

pseudotime-dependent TFs, we used TFs that are annotated in the Animal TF Database (AnimalTFDB 2.0) (Zhang et al., 2015).

We also performed pseudotemporal trajectory analysis usingMonocle 3 v0.1.3 (Cao et al., 2019). As a successor of Monocle 2, the

major updates in Monocle 3 include use of UMAP space to initialize trajectory inference and a better structured workflow to learn

developmental trajectories. The raw count data of the highly variable genes were used in pseudotemporal trajectory analysis, which

were identified using FindVariableGenes function from Seurat package (parameter y.cutoff = 0.5). The UMAP space from Seurat

package was used as an input of the reduced dimensional space in Monocle 3.

RNA velocity analysis
RNA velocity was calculated based on the spliced and unspliced counts as previously reported (LaManno et al., 2018), and cells that

were present in the pseudotemporal ordering were used for the analysis. We used the R implementation ‘‘velocyto’’ with a modified

dynamical model to perform RNA velocity analysis. La Manno et al. (2018) used a linear model to relate abundance of pre-mRNA U(t)

with abundance of mature mRNA S(t):
8>><
>>:

dU

dt
=a� b$UðtÞ

dS

dt
= b$UðtÞ � gSðtÞ

In this model, mRNA abundance over time (represented as dS/dt) is the velocity of gene expression. Given that the molecular

regulatory mechanisms between pre-mRNA and mature mRNA are complicated, and in many molecular networks more commonly

we observe non-linear (e.g., switch-like) responses, we also proposed a nonlinear model of RNA velocity for the effects of pre-mRNA

on the abundance of mature mRNA based on Michaelis–Menten kinetics. The nonlinear RNA velocity model is formulated as:
8>><
>>:

dU

dt
=a� b$UðtÞ

dS

dt
= b$

Un

Kn +Un � gSðtÞ

where n is the Hill coefficient (describing cooperativity) and K is a constant. We set n and K to be 1 and 0.5 in all the analyses below.

The R package implementing this non-linear dynamical model, termed as nlvelo, is available at https://github.com/sqjin/nlvelo.

RNA velocity was estimated using gene-relative model with k-nearest neighbor cell pooling (k = 30). Velocity fields were then

projected onto a low dimensional space (e.g. UMAP). Parameter n-sight, which defines the size of the neighborhood used for pro-

jecting the velocity, was set to 500.

For RNA velocity analysis of basal cells and HFSCs in WO samples, the UMAP space was generated using Seurat with the top 10

PCs as inputs. Velocity fields were then projected onto this UMAP space.

FLIM and data analysis
Freshly excised skin was placed in a glass bottommicrowell dish (MatTek Corporation; PG-35 g-1.5-14-C) and imaging was performed

using a 63X Oil 1.4NA lens (Zeiss) on a Zeiss LSM 880microscope coupled to a Ti:Sapphire laser system (Spectra Physics, Santa Clara

CA, USA,Mai Tai HP). External hybrid photomultiplier tubes (Becker&Hickl; HPM-100-40) and ISS A320 FastFLIM system (ISS, Urbana-

Champaign, Illinois) were used for Phasor Fluorescence Lifetime ImagingMicroscopy (Colyer et al., 2008; Digman et al., 2008; Stringari

et al., 2015). A 690 nm internal dichroic filter (Zeiss) was used to separate the fluorescence emission from the laser excitation. The fluo-

rescenceemissionwas reflectedontoa495LPdichroicmirrorandsubsequentlya460/80nmbandpassfilter (Semrock;FF02-460/80-25)

before the external detector to filter the NADH fluorescence emission. Images were acquired using unidirectional scan, 16.38 us pixel

dwell time, 2563 256 pixels per frame, and 58.67um field of view. All images were acquired within 1.5 hours of animal death.

The phasor plot method provides a fit-free, unbiased way of analyzing FLIM data quantitatively. FlimBox, developed by the

Laboratory for Fluorescence Dynamics at UC Irvine, records the photon counts per pixel in a number of cross-correlation phase

bins called the phase histogram used for the Digital Frequency Domain FLIM method. The phase histogram is processed by the

fast Fourier transform to produce the phase delay f and modulation ratio m of the emission relative to the excitation from which

the G and S coordinates calculated at each pixel of the image are represented in the phasor plot.

GðuÞ = mðuÞ$cosðfÞ; SðuÞ=mðuÞ$sinðfÞ
DataanalysiswasperformedwithGlobals for Images (SIMFCS4.0) softwaredevelopedat the Laboratory for FluorescenceDynamics.

We used coumarin 6 (Sigma-Aldrich; 546283), with known lifetime of 2.5ns, for calibration of the instrument response function.

Quantification of the average NADH phasor per region of interest was calculated using the built-in masking feature in SimFCS 4.0.

This masking feature averages the lifetime (t) of all pixels included within a designated region of interest (ROI). SimFCS converts G

and S coordinates of the phasor plot into the fraction of bound by calculating the distance of the ROI average t to the theoretical
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lifetime t of boundNADH (t = 3.4 ns), divided by the total distance between free NADH (t = 0.4 ns) and boundNADH. AnROI within the

boundary of each cell demarked byGFP expression (but excluding the cell membrane-associated GFP signal) was drawn to estimate

the free/bound NADH ratio for each cell within a field of view for all images. The fraction bound values obtained fromSimFCS 4.0were

then converted to free/bound ratio NADH for each ROI as a measure of metabolism based on previous work (Cinco et al., 2016; Kim

et al., 2016; Mah et al., 2018; Stringari et al., 2012, 2015).

Morphology and immunostaining
For histological analysis, mouse back skin was shaved, removed, fixed in 4%paraformaldehyde (MP; 150146) in 1X PBS, embedded

in paraffin, sectioned, and stained with hematoxylin and eosin (H/E). For indirect immunofluorescence, mouse back skin was freshly

frozen in OCT (Fisher; 4585), sectioned at 5 mm, and staining was performed using DAPI (Thermo Fisher; D1306: 1:1000) and the

following primary antibodies: Ki67 (Cell Signaling, D3B5, 1:1000), K14 (chicken, 1:1000; rabbit, 1:1000; gift of Julie Segre, National

Institutes of Health, Bethesda), Slug/Snai2 (Cell Signaling, C19G7, 1:1000), Fos (Santa Cruz Biotechnology, sc271243, 1:100), F4/80

(eBioscience, 14-4801-82, 1:200), anti-SMA (Abcam, ab5694, 1:500), Col17a1 (Abcam, ab184996, 1:200), or p63 (Santa Cruz

Biotechnology, sc-8343, 1:50).

RNAScope, data analysis and presentation
RNAScopewas performedusing theMultiplex Fluorescent v2 system (ACD; 323100). Briefly,mouseback skin orwoundswere freshly

frozen in OCT (Fisher; 4585) and sectioned at 10 mm. Sections were fixed at room temperature for 1 hour with 4% paraformaldehyde

(Electron Microscopy Sciences; 15715-S), which was diluted from stock with 1x DPBS (Corning Cellgro; 21-031-CM). After fixation,

standard RNAScope protocols were used according to manufacturer’s instructions. The following probes were used: Krt14 (ACD;

422521-C3),Trp63 (ACD; 464591-C2),Cdkn1a (ACD; 408551-C1), and Id1 (ACD; 312221-C3). Fluorescence intensity in thebasal cells

(stained positive for anti-K14 antibody and adjacent to the basement membrane or wound bed) in both UW andWO (from the wound

margin to the tip of the migrating front) samples was quantified in a manner that preserves spatial information.

We used Gaussian Process Regression (GPR), a non-parametric method to fit observations and to visualize the major trends of

data by controlling the smoothness of the model. GPR uses kernels to measure similarity between inputs based on their distances,

and inputs with high similarity should have similar output from the fitted model. We used the implementation of GPR in scikit-learn

package (Pedregosa et al., 2011; Rasmussen and Williams, 1996). The Matérn kernel is used for similarity measurement and a white

noise kernel is included to accommodate noise in the data.

Given a collection of values, BASCmethod (Hopfensitz et al., 2012) first sorts the values to obtain an initial step function represen-

tation. This step function is then iteratively refined until there are only two steps. It can be roughly understood as finding the strongest

discontinuity point in data. The R implementation of this package ‘‘Binarize’’ is used with algorithm option B to determine thresholds

for binarization of the markers.

Calculation of signature score of a gene set
For gene scoring analysis, gene sets were acquired from theMSigDB database, theMGI Gene Ontology Browser (including keratino-

cyte differentiation scoring) and published literatures (including a5 integrin-expressing cell and quiescence/stemness scoring)

(Aragona et al., 2017; Cheung andRando, 2013). Specific genes in each gene set are listed in Table S7. TheAddModuleScore function

inSeuratRpackagewas thenused tocalculate the signature scoreof eachgeneset in eachcell. The two-sidedWilcoxon rank sumtest

was used to evaluate whether there are significant differences in the computed signature scores between two groups of cells.

Analysis of gene expression overlap
To computationally analyze the potential overlap in basal cell expression ofCol17a1, Trp63, Id1, andCdkn1a in our scRNA-seq data,

we binarized the expression of each gene by choosing thresholds based on the quantile of all expressed cells. We quantified the

percentage of cells expressing one gene, two genes, or three genes using three different quantile (0.25, 0.5, and 0.75) thresholds.

QUANTIFICAITON AND STATISTICAL ANALYSIS

Data are presented as the mean ± standard error of mean (SEM), or the median ± interquartile range (IQR), as indicated. The sample

sizes in each plot have been listed in the Results section and Figure Legends where appropriate. For data represented as violin plots,

two-tailed Wilcoxon rank sum test was performed using R (https://www.r-project.org/). For comparison of percentage changes,

Chi-square test was performed using MATLAB (https://www.mathworks.com/). For differential gene expression analysis between

cell clusters, Wilcoxon rank sum test was performed using R. A significance threshold of p < 0.01 was used for defining marker genes

of each cell cluster. For data presented in bar plot, unpaired two-tailed Student’s t test was used.
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DATA AND CODE AVAILABILITY

The scRNA-seq data reported in this paper have been deposited in the GEO database under accession code GEO: GSE142471. The

software of nlvelo R package is available at https://github.com/sqjin/nlvelo. The codes and walkthroughs for pseudotemporal trajec-

tory analysis are available at https://github.com/sqjin/codes_CellReports2019.
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